
PSR-CAS Documentation
Release 1.0.0

Pol Dellaiera

Jan 30, 2020

Contents

1 Requirements 3
1.1 PHP . 3
1.2 PHP Extensions . 3
1.3 Packages . 3

2 Installation 5

3 Configuration 7

4 Usage 9
4.1 Bare PHP . 9
4.2 Symfony . 9

5 Tests, code quality and code style 11

6 Contributing 13

7 Development 15

i

ii

PSR-CAS Documentation, Release 1.0.0

PSR CAS, a standard PHP library for CAS authentication.

The Central Authentication Service (CAS) is an Open-Source single sign-on protocol for the web. Its purpose is to
permit a user to access multiple applications while providing their credentials only once. It also allows web applica-
tions to authenticate users without gaining access to a user’s security credentials, such as a password. The name CAS
also refers to a software package that implements this protocol.

For improving the flexibility and in order to maximize it, it is able to authenticate users and leaves the session handling
up to the developer.

In order to foster a greater adoption of this library, it has been built with interoperability in mind. It only uses PHP
Standards Recommendations interfaces.

• PSR-3 for logging,

• PSR-4 for classes autoloading,

• PSR-6 for caching,

• PSR-7 for HTTP messages (requests, responses),

• PSR-12 for coding standards,

• PSR-17 for HTTP messages factories,

• PSR-18 for HTTP client.

Therefore, this library is framework agnostic and can be integrated in any PHP project, with any framework.

Contents 1

https://en.wikipedia.org/wiki/Central_Authentication_Service
https://www.php-fig.org/
https://www.php-fig.org/
https://www.php-fig.org/psr/psr-3/
https://www.php-fig.org/psr/psr-4/
https://www.php-fig.org/psr/psr-6/
https://www.php-fig.org/psr/psr-7/
https://www.php-fig.org/psr/psr-12/
https://www.php-fig.org/psr/psr-17/
https://www.php-fig.org/psr/psr-18/

PSR-CAS Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Requirements

1.1 PHP

PHP greater than 7.1 is required for this library.

1.2 PHP Extensions

• json

• libxml

• simplexml

1.3 Packages

In order to get the PSR CAS library running, you will require some dependencies.

To give a maximum freedom to the users using PSR CAS, each required dependencies is a well defined standardized
PHP class.

Dependency PSR Implementations Example package
Logger PSR-3 log-implementation monolog/monolog
Cache PSR-6 cache-implementation symfony/cache
Server request PSR-7 http-message-implementations nyholm/psr7-server
HTTP factories PSR-17 http-factory-implementations nyholm/psr7
HTTP Client PSR-18 http-client-implementations symfony/http-client

You are free to use any package you want, as long as they are implementing the proper requirement.

PSR CAS only returns standardized HTTP responses, you will need to emit the response back to the client.

3

https://www.php-fig.org/psr/psr-3/
https://packagist.org/providers/psr/log-implementation
https://packagist.org/packages/monolog/monolog
https://www.php-fig.org/psr/psr-6/
https://packagist.org/providers/psr/cache-implementation
https://packagist.org/packages/symfony/cache
https://www.php-fig.org/psr/psr-7/
https://packagist.org/providers/psr/http-message-implementation
https://packagist.org/packages/nyholm/psr7-server
https://www.php-fig.org/psr/psr-17/
https://packagist.org/providers/psr/http-factory-implementation
https://packagist.org/packages/nyholm/psr7
https://www.php-fig.org/psr/psr-18/
https://packagist.org/providers/psr/http-client-implementation
https://packagist.org/packages/symfony/http-client

PSR-CAS Documentation, Release 1.0.0

You may use custom code for that, but you can also use any of the following packages for this

• zendframework/zend-httphandlerrunner

• http-interop/response-sender

4 Chapter 1. Requirements

https://packagist.org/packages/zendframework/zend-httphandlerrunner
https://packagist.org/packages/http-interop/response-sender

CHAPTER 2

Installation

The easiest way to install it is through Composer

composer require drupol/psrcas

5

https://getcomposer.org

PSR-CAS Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

Configuration

base_url: https://casserver.herokuapp.com/cas
protocol:

login:
path: /login
allowed_parameters:

- service
- renew
- gateway

serviceValidate:
path: /p3/serviceValidate
allowed_parameters:

- service
- ticket
- pgtUrl
- renew
- format

default_parameters:
pgtUrl: https://my-app/casProxyCallback

logout:
path: /logout
allowed_parameters:

- service
default_parameters:

service: https://my-app/homepage
proxy:
path: /proxy
allowed_parameters:

- targetService
- pgt

proxyValidate:
path: /proxyValidate
allowed_parameters:

- service
- ticket

(continues on next page)

7

PSR-CAS Documentation, Release 1.0.0

(continued from previous page)

- pgtUrl
default_parameters:

pgtUrl: https://my-app/casProxyCallback

8 Chapter 3. Configuration

CHAPTER 4

Usage

Apereo already provides a demo CAS server without no proxy authentication mechanism enabled.

In order to test the libraries here, I’ve setup another CAS server with Proxy authentication enabled this time.

Feel free to use it for your tests.

Warning: If your client application is not hosted on a public server and in HTTPS, this won’t work.

Tip: See more on the page Development. if you want to have your own local CAS server.

The test login is casuser, password is: Mellon

4.1 Bare PHP

To get you started with PSR CAS in a simple bare PHP project (without using any framework), you can check the
following project: drupol/psrcas-client-poc

Test the bare PHP demo application now.

4.2 Symfony

The PSR CAS library can be used in a Symfony (4 or 5) project through the package drupol/cas-bundle

Test the Symfony bundle demo application now.

See the documentation of the PSR CAS Bundle for more information.

9

https://www.apereo.org/
https://heroku-cas-server.herokuapp.com/cas/login
https://github.com/drupol/psrcas-client-poc/
https://psrcas-php-demo.herokuapp.com/
https://github.com/drupol/cas-bundle
https://cas-bundle-demo.herokuapp.com/
http://github.com/drupol/cas-bundle

PSR-CAS Documentation, Release 1.0.0

10 Chapter 4. Usage

CHAPTER 5

Tests, code quality and code style

Every time changes are introduced into the library, Travis CI and Github Actions run the tests written with PHPSpec.

PHPInfection is also triggered used to ensure that your code is properly tested.

The code style is based on PSR-12 plus a set of custom rules. Find more about the code style in use in the package
drupol/php-conventions.

A PHP quality tool, Grumphp, is used to orchestrate all these tasks at each commit on the local machine, but also on
the continuous integration tools (Travis, Github actions)

To run the whole tests tasks locally, do

composer grumphp

or

./vendor/bin/grumphp run

Here’s an example of output that shows all the tasks that are setup in Grumphp and that will check your code

$./vendor/bin/grumphp run
GrumPHP is sniffing your code!
Running task 1/13: SecurityChecker... XXX
Running task 2/13: Composer... XXX
Running task 3/13: ComposerNormalize... XXX
Running task 4/13: YamlLint... XXX
Running task 5/13: JsonLint... XXX
Running task 6/13: PhpLint... XXX
Running task 7/13: TwigCs... XXX
Running task 8/13: PhpCsAutoFixerV2... XXX
Running task 9/13: PhpCsFixerV2... XXX
Running task 10/13: Phpcs... XXX
Running task 11/13: PhpStan... XXX
Running task 12/13: Phpspec... XXX
Running task 13/13: Infection... XXX
$

11

https://travis-ci.org/drupol/psrcas/builds
https://github.com/drupol/psrcas/actions
http://www.phpspec.net/
https://github.com/infection/infection
https://www.php-fig.org/psr/psr-12/
https://github.com/drupol/php-conventions
https://github.com/phpro/grumphp

PSR-CAS Documentation, Release 1.0.0

12 Chapter 5. Tests, code quality and code style

CHAPTER 6

Contributing

See the file CONTRIBUTING.md but feel free to contribute to this library by sending Github pull requests.

13

.github/CONTRIBUTING.md

PSR-CAS Documentation, Release 1.0.0

14 Chapter 6. Contributing

CHAPTER 7

Development

In order to test efficiently, is to test the library against a real CAS server.

If you’re not able to use one, the best is to work with a local CAS server.

If you want to setup your own local CAS server in less than 2 minutes, use the repo crpeck/cas-overlay-docker and
you’ll have something working really quickly.

Don’t forget to setup the HTTPS certificates because the communication between the CAS server and your application
MUST be in HTTPS, and I haven’t found a way yet to disable this for testing purposes.

If you prefer to use your local machine, there are already some documentation on Github.

15

https://github.com/crpeck/cas-overlay-docker
https://apereo.github.io/cas/developer/Build-Process.html

	Requirements
	PHP
	PHP Extensions
	Packages

	Installation
	Configuration
	Usage
	Bare PHP
	Symfony

	Tests, code quality and code style
	Contributing
	Development

